Big data

Come trattare le masse di dati

Autore: Andrea Pacchiarotti
Ultimo aggiornamento: 21 Settembre 2021
Categoria: Web Marketing Big data

Big data
Big data

I Big data diventano sempre più grandi e il loro significato viene spesso usato superficialmente senza conoscerne effettivamente tutte le implicazioni. In questa pagina cercherò di spiegarti cosa realmente sono e come potrebbero aiutarti.

Sommario Big data

  1. Definizione di Big data
  2. Storia dei Big data
  3. Le 5 V dei Big data
  4. Big data analytics
  5. Tendenze nel mondo Big data analytics
  6. Big data analysis
  7. Vantaggi ad analizzare i Big Data
  8. Competenze per gestire progetti di Big data
  9. Big data e quantum computing
  10. Tutela dei dati personali

Definizione di Big data

In campo scientifico il termine Big data indica una raccolta di una massa di dati eterogenei, strutturati e non strutturati, così estesa in volume, velocità e varietà, d’aver bisogno di apposite tecnologie e metodi per produrre conoscenza scoprendo relazioni tra fenomeni diversi e anticipandone di futuri.
Quantità e complessità che qualificano un insieme di dati come Big data è un tema dibattuto. Alcuni considerano il petabyte come soglia, altri gli exabyte.
La più piccola unità di misura è detta Bit
8 Bit formano un Byte
1024 Byte = 1KB Chilobyte 103
1024 KB = 1MB Megabyte 106
1024 MB = 1GB Gigabyte 109
1024 GB = 1TB Terabyte 1012
1024 TB = 1PB Petabyte 1015
1024 PB = 1EB Exabyte 1018
1024 EB = 1ZB Zettabyte 1021
1024 ZB = 1YB Yottabyte 1024

Pensiamo alla nostra vita quotidiana: quando utilizziamo il computer, lo smartphone, la carta di credito o il bancomat, interagiamo sui social media, clicchiamo su un link, apriamo una app, usiamo una qualsiasi tessera dotata di microchip o facciamo una miriade di altre azioni, lasciamo una traccia digitale.
Pochi sanno quanto Google ci conosca profondamente o quanto Facebook, con il suo oltre miliardo di iscritti e 3 milioni di post al minuto,  sappia sui nostri amici, stati d’animo, preferenze, aspettative e bisogni. Entrambi questi colossi sono in grado di profilarci in base a come navighiamo e ci suggerisce pubblicità mirate. Ma i Big data sono sfruttati anche da molteplici altre realtà come ad esempio Amazon, Bing, Yahoo o dagli Internet Provider che sanno costantemente ciò che navighiamo, anche se pensiamo di farlo in incognito.
Le nostre attività digitali creano dunque una sempre crescente mole di dati, che viene analizzata per creare nuova conoscenza adatta a prendere decisioni migliori (per chi?), a tutti i livelli.
Super computer e algoritmi esaminano costantemente quest’enorme volume di dati e a breve i computer quantistici accelereranno il processo.

Storia dei Big data

Utilizzo e conservazione dei dati sono pratiche antiche di millenni. Pensiamo per esempio all’abaco, il primo dispositivo usato per fare calcoli fin dal Duemila a.C. in Cina e nella Mezzaluna Fertile e alla biblioteca di Alessandria del III secolo a.C., la più grande e ricca dell’antichità; ciò prova come l’essere umano coltiva da sempre la passione di preservare le informazioni, per poterle consultare successivamente.
Nel 1880 Herman Hollerith (che anni dopo fondò una società che a seguito di fusioni e ridenominazione diventò, nel 1924, l’IBM), addetto ai censimenti negli Stati Uniti, studiò un modo per organizzare le informazioni raccolte riuscendo a ridurre clamorosamente il tempo da dedicare al lavoro di catalogazione.
Nel 1958 il tedesco Hans Peter Luhn, ricercatore e inventore, mentre stava lavorando per IBM, coniò il termine Business Intelligence, una locuzione che sottintende un modo di ottenere vantaggio sui concorrenti raccogliendo e analizzando dati importanti per il business.
Nel 1965 venne costruito il primo data center negli Stati Uniti e, a distanza di qualche anno, uno sviluppatore creò in IBM il primo framework per un database relazionale (come ad esempio MySql o Microsoft Access), lo standard odierno più comune per la raccolta dei dati.
Nel 1991 nacque Internet, che iniziò a rendere le informazioni accessibili a tutto il mondo.
Nel 1999 venne coniato il neologismo Internet of Things, Internet delle cose (IoT o IdC), l’insieme delle informazioni che arrivano ai sistemi IT dalla rete di dispositivi collegati.
Sempre nel 1999 nasce la parola Big data, ma le tecnologie non sono ancora in grado di elaborare in modo ottimale la mole di dati immagazzinati, perché troppi e troppo vari per i database tradizionali. Questi ultimi infatti, manipolano solo dati strutturati o strutturabili in database relazionali. I Big data sono formati però anche da informazioni destrutturate provenienti dal web.
Oggi i Big data sono spesso gestiti con silos o Data Warehouse, ma sempre più aziende stanno migrando verso soluzioni più avanzate come i Data Lake. Ad oggi, per la gestione di grandi volumi di dati, strutturati o meno, si ricorre spesso a una libreria software open source chiamata Hadoop della Apache Foundation. Anche Amazon Web Services, come altre aziende, offre un servizio per il medesimo fine.


Le 5 V dei Big data

Nel 2001, Douglas Laney definì il Modello delle 3 V dei Big data (che nel corso del tempo è divenuto 5 V):

Big data analytics

Unendo gli analytics ai Big data è possibile ad esempio:

Tendenze nel mondo Big data analytics

Big data analysis

Per far sì che i Big data possano dare un’ottimale rappresentazione della realtà, è necessario uno scenario di tipo Data Driven (cioè effettuato dopo un'analisi dei dati) formato da 4 tipologie di Data Analysis. L’adozione degli Analytics nelle grandi imprese contempla:

Vantaggi ad analizzare i Big Data

Questo enorme flusso di informazioni aiuta le imprese a centrare i propri obiettivi: pensiamo ad esempio ai già citati Facebook e Google (e alle tante altre aziende), il cui successo dipende proprio dai Big Data che consentono una panoramica a 360 gradi sulle preferenze, sugli  interessi, sui bisogni, ecc. dei navigatori che usano i loro servizi.
Questa mole di dati dà indicazioni sul grado d’attrazione del mercato verso un certo marchio, fanno capire cosa spinge i consumatori a scegliere un determinato bene o servizio, forniscono un affidabile schema predittivo. Tutto ciò si traduce in un contenimento dei costi tramite l’ottimizzazione delle procedure e quindi ad un aumento dei profitti, che è proprio il target ultimo della Big Data Analytics.
Inevitabile la nascita di nuove figure professionali, come il Data Scientist, il Data Engineer e il Data Analyst.

Competenze per gestire progetti di Big data

Big data e quantum computing

I computer quantistici sono rivoluzionari sotto ogni aspetto del trattamento dei dati: memorizzazione, elaborazione, trasmissione. La gestione dei Big Data è una dura battaglia per i computer classici, ma i computer quantistici a regime l’affronteranno in tempi decisamente ridotti e più efficacemente. A tal proposito utilissimi sono gli studi sul Quantum Machine Learning, l’apprendimento automatico su elaboratori quantistici, attraverso cui la macchina apprende dai dati mediante algoritmi artificiali. È dimostrato che un neurone artificiale può essere implementato proficuamente su un processore quantistico per costruire reti neurali artificiali quantistiche che velocizzano di gran lunga l’apprendimento. Il Quantum Machine Learning, addirittura, è già in parte disponibile in cloud. Ulteriori studi dimostrano anche come non serva un computer quantistico di grandi dimensioni per affrontare matematicamente alcuni problemi applicati ai big data. A proposito del quantum computing potrebbe interessarti leggere come i computer quantistici ci renderanno simili a Dio.

Tutela dei dati personali

Naturalmente tutto questo uso di dati pone un problema di privacy e di sicurezza informatica (la cosiddetta cyber security). Analisi e gestione dei Big data implica smisurate criticità sul trattamento dei dati personali e sulla tutela della privacy. L’entrata in vigore del GDPR ha inoltre reso più restrittivi i confini relativi alla protezione dei dati personali, favorendo eventuali sanzioni.


Per saperne di più sul Web Marketing potrebbero interessarti questi libri:

Se vuoi approfondire alcuni dei temi trattati, visita la pagina con le mie pubblicazioni cartacee e online

Se l'articolo ti è piaciuto, condividilo!

Segui l'hashtag #AndreaPacchiarotti